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A method of calculating the absorption coefficient in C02 rotational--vibrational 
bands, taking account of the rotational structure, is outlined. Account is taken 
of the effect of Fermi resonance on the position and intensity of the spectral 
lines. 

To calculate the radiant heat transfer in power installations and also to solve a number 
of applied problems of laser physics and atmospheric physics, information is required on the 
spectral and integral characteristics of carbon dioxide over a broad range of temperature and 
density. The IR spectrum of CO= is formed by vibrational--rotational transitions which, 
grouped in certain regions of the spectrum, form about i0 bands at room temperature. At high- 
er temperatures, the number of vibrational transitions rises sharply and the separation of 
the individual bands becomes very arbitrary. The most important optical characteristic of 
the gas is the absorption coefficient. Accurate calculations require a knowledge of the ab- 
sorption coefficient, taking account of the rotational structure. 

The absorption coefficient for an individual line in the case of linear triatomlc mol- 
ecules takes the form 

k~ - 8 ~ s  N (2i  + 1) �9 ,~" , . ,  12 ( 1 )  3hc Q exp(--E~,~,/kT)v [1 --exp(--twv/kT)]] ( vlv2 o31 /R[vtv~v s] > W(v). 

Thus, to calculate the absorption coefficient, it is necessary to know the energy of the vi- 
brational--rotational states, their wave functions, the form of the dlpole-moment operator, 
and the llne shape. 

i. In the CO2 molecule, Fermi resonance has a strong effect on the energy-level struc- 
ture and the wave-function values. A resonance interaction arises between closely lying 
states of the same symmetry; (vl, v~, vs) -- (vl -- i, (v2 + 2) l, vs). The part of the anhar- 
monicity potential responsible for the resonance interaction takes the form 

V~ = C , = ~ , ~ .  (2) 

The resonance-interaction operator V R is given in the eigenvector space for the Hamiltonian 

Ho + V. (3) 

This allows perturbation theory to be used for the Hamiltonian in Eq. (3) in the eigenvector 
space of the Hamiltonian Ho; splitting with respect to Z 2 is taken into account. As a result, 
values of the energy and the wave function are obtained for a state of the type (0, v v, vs) 
which is unperturbed by Fermi resonance. The system of equations for determining the spec- 
troscopic constants from the anharmoniclty constants differs from that obtained in [I] in 
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the following expressions: 

X 2 z -  3Cz2~/2 - (Cl=)~[ - 1/2(o I - -  1/8 (2o)-,- ~oi) ], 

Xu = - -  3C2~2/2 - i  (Cm)2/8 (2o~ -~- cot) - -  B t, 

The values of the spectroscopic constants Xij and B Z are taken from [2] and C~22 from [3]. 
The values of the anharmonicity constants obtained are given in Table i, 

Further, the eigenvectors @i and eigenvalues E i of the Hamiltonlan 

Ho + V -i- VR (4) 

are found in the eigenfunctlon space ~i of the Hamiltonian in gq. (3). Let E~ be the eigen- 
~O 

values corresponding to the eigenvectors @i" It is quickly evident that the vector subspaces 
of the form 

0 (l + 2VOtv3, 

1 (l " 2vi -- 2)~v3, 

�9 . ~ . . ~ . 

v t ltv3 

are invariant for the operator V R. Hence, the elgenvectors of the H~m~itonlan in Eq. (4) 

may be found in the form of the linear combinations 

= ~ C ~ - .  ( 5 )  

S u b s t i t u t i n g  Eq. (5) i n t o  t h e  S c h r S d i n g e r  e q u a t i o n ,  a s y s t e m  of  e q u a t i o n s  f o r  t h e  d e t e r m i n a -  
t i o n  o f  t h e  c o n s t a n t s  o f  t h e  e x p a n s i o n  i s  o b t a i n e d :  

~ C ~ t  [(E~ -- E)6~i + 0/~ )k~l = 1, (6) 
i=I 

and t h e  c o n d i t i o n  o f  s o l v a b i l i t y  of  t h i s  s y s t e m  g i v e s  a s e c u l a r  e q u a t i o n  f o r  t he  d e t e r m i n a -  
t i o n  of the energy: 

det [(~o _ E) 6k~ + (VR)ks] = 0. (7) 

The expression for the matrix elements (VR)kj was theoretically obtained in [4], and the con- 
stants were found in [2]. The energies of the levels were found by numerical diagonallzation 
of the matrix; polyads of dlmensionallty up to n = ii were taken into account. For example, 
in Fig. i the effect of Fermi resonance on a group of vibrational levels is shown. It is 
evident that the resonance perturbation may considerably exceed the distance between the le- 
vels [5 ] .  

2. To find the probability of vibrational--rotational transitions, taking account of the 
effect of Fermi resonance, it is necessary to find the wave functions in Eq. (5). 

For the constant C, the following recurrence relations are obtained 

Crat = C t tK~ ;  m = 2, 3 . . . . .  n, 

+ K i n - ,  (Em_~ - -  EOI/(V~ (8) = - -  [K,,,-2 (VR),,,_t,,,,_2 ),. ,r, ,-.  

(v~ h.0 = (v~)0, ,  = 0; K~ = 0; r~  = 1. 

The conditions of wave-function normalization allow Cji to be determined accurately except 
for the phase factor. Knowing these coefficients, it is possible to calculate the rotational 
constants, taking account of Fermi resonance: 
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TABLE i. Anharmoniclty Constants, cm -~ 

C m [ --28,12 I C12~ ] 7 4 , 5 2  C, ss 

Cm' I --1,041 [ C,1,~ " [ 1,1175 C,,,a [ --5,1555 

[ 0,007822 I c,o, ]-8,8,1 [_20, 1 

I _1,78 

B, = .~  [C.n]2B~ �9 (9) 
I 

Here B] are calculated from the examples given, e.g., in [2]. The effects of Fermi resonance 
on the constants of I division are taken into account analogously. 

The relation between the matrix elements in the laboratory system and the coordinate 
system rigidly fixed to the molecule takes the form 

< v']'l'm'[ R~[ v#m > = i  j -Y  (--I) ~'-m" V (2] + 1) (2i' + 1) ( 

Here R ~ and R ~ q q, are the tensor components of the dipole-moment operator in the laboratory 

and rotating coordinate systems, respectively. Taking account of degeneracy with respect to 
m and Z allows the rlght-hand .side to be reduced to the form 

(Ni; t ' )  ~ I < v' ! ' l  R~, I vl > 12, 
where CN~iZ') are the Conwell--London factors and ,<v'Z' ,R~, IvZ>, z are the vibrational ma- 

trlx elements. Using the wave functions found, the final result obtained is 

~0 In calculating ~k by perturbatlon-theory methods, the second-order approximation was taken 

into account; in the first approximation, the third and fourth orders of the anharmonlclty 
potentlal were taken into account, and in the second approximation the third order. In this 
case the matrix elements in the rlght-hand side of Eq. (ii) take the form 

, ~o) = ( ~ / R / , o )  .~.. ~, (~o Iv<~'l ~ o ) ( ~ o l ~ l ~ o  ) + 
(E o _ E o ) 
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+ %-~(,0 i v , . , i , o ) ( , o  ~ r 
. , : . . i  (~o _Eo) 

+ E (,o 1 v~', i~ o) (,Ol R i ,  o) 
(~o _ E o) + E 

(,o I v(3, i xp.o )(,o i v(a,i aft)(~o I R i,o) 
(E o o o --E~)(Ei --E ~ 

_ (E ~ - E ~  " (,o! ~ i ,~o) _ _f (e ~ -E~,) ~ • 

E x ( , ~  + (*~IV(3'I*~)(~P, ~ 1 7 6 1 7 6  , 
(E ~ - E  ~ (E ~ -E~,) - ~ -  

+ i i(e ~ o o o v, ,o 0 + _ E o )  , 

where  t h e  s u b s c r i p t s  i ,  ] ,  k ,  . . .  d e n o t e  t h e  s e t  o f  quantum numbers  (v~, v~,  v~) .  The c o e f -  
f i c i e n t s  o f  t h e  e x p a n s i o n  o f  t h e  d i p o l e  moment w i t h  r e s p e c t  t o  t h e  no rma l  c o o r d i n a t e s  a r e  
r e q u i r e d  f o r  t h e  c a l c u l a t i o n  o f  t h e  m a t r i x  e l e m e n t s ;  t h e s e  w e re  found  i n  t h e  fo rm 

R(~) R(a~3,_ 1_ (is) (ns) 2 / ~ ( ~ 3 ) E s _ l _ / ; ) ( z 2 s ) ~ 2 ~ -  - 

(13) 

The values of <v'l'lR[vZ> for the strongest vibrational transitions were found from experi- 
mental data using [6] and the linearlty of Eq. (i0) with respect to the operator R. Finally, 
two linear systems of fifth order with respect to the coefficients RiJ k were solved. The 
results calculated for R ijk are given in Table 2. 

The matrix elements found allow the integral absorption of the individual vlbratlonal 
transitions to be calculated. The results obtained in this way for the most important vi- 
brational transitions of COa at T = 300~ are shown in Fig. 2. It is seen that they are 
grouped in the bands known from experiment. More detailed vibratlonal-transition structure 
is shown in Fig. 3. 

From the results obtained, choosing the appropriate form of W(9) for the lines, the 
spectral absorption coefficient may be obtained. In the temperature range from 200 to 30000K 
at pressures P > 0.i bar and in the frequency range from 500 to i0,000 cm-*, Doppler broaden- 
ing may be neglected and the contour regarded as disperslonal. The half-wldths were calcula- 
ted in accordance with the theory developed in [7, 8] using the results of [9] and taking 
account of the dependence of the rotational quantum number j. In Fig. 4, as an example, the 
section of the spectrum wlth resolved rotational structure is shown. 

NOTATION 

kv, spectral absorption coefficient, taking account of induced emission; N, concentration 
of COa molecules; J, total moment; Q, vibrational--rotatlonal statistical sum; E, level ener- 
gy; vi, vi' , vibrational quantum numbers; h, Planck's constant; c, velocity of light; k, 
Boltzmann's constant; T, absolute temperature; v, frequency, cm-*; R, dlpole-moment operator; 
W(v) spectral llne shape; Cij , anharmonicity constants; ~, normal coordinates; Ho, Hamilton- 
Jan of molecule in the harmonic approximations; V, anharmonlc potential without resonance 

TABLE 2. Coefficients of Expansion of the 
Dipole Moment with Respect to the Normal 

2 6  1 / 2  5 2 Z Coordinates, i0 kg *m / .sec- 

R02) I - - 0 , 0 7 5 3 6 1  RC 2") --0,03958 

R(n~ I 0,04349 ] R(20-') 0,1119 

R(la) ] 5,362 [ R( a ) 20,12 

R(us) [ 0,8212 [ R( ~'-' ) 0,03479 

m-', [ 1o,~6 I R~"'~ o,16a2 
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component; m, frequency of normal oscillations; X, BZ, spectroscopic constants;V, wave func- 
tion;: Rij, matrix elements; Sij, integral intensity of vibrational transition. 
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METHODS OF CALCULATING MOLECULAR-GAS RADIATION ON THE BASIS 

OF SPECTRAL-COMPOSITION MODELING 

Yu. V. Khodyko, E. I. Vitkin, 
and V. P. Kabashnikov 

UDC 5 35.231.4 

A method is proposed for the calculation of the radiation of Inhomogeneous molecular 
gases at low pressures; the method is based on the s,,mmation of the equivalent 
widths of spectral lines and a quasiexponential model of the absorption band. 

In many technological processes, the working medium is a molecular gas active in the IR 
region of the spectrum. At high temperatures of the medium, radiant energy transfer plays 
an important role as well as the convective mechanism of heat transfer, whereas carbon and 
metal-oxide particles emit and absorb radiation over the whole spectral region; the absorp- 
tion of molecular-gas radiation occurs in vibratlonal--rotational bands, and beyond the limits 
of the bands the gas is practically transparent. 

Each vibrational--rotational band consists of a more or less regular set of individual 
spectral lines whose characteristics can only be determined from a knowledge of the position, 
intensity, and contour shape. The bands with the simplest structure are the absorption bands 
of diatomic molecules, the wave function of which may be written in the first approximation 
as a superpositlon of a rigid rotator and a harmonic oscillator, although no difficulties are 
usually involved in taking account of anharmonlc behavior [i]. The spectra of triatomic mol- 
ecules --both linear (C02) and nonlinear (H20, S02) -- are characterized by considerably great- 
er complexity. At high temperatures, theoretical models of symmetric- or antisymmetric-gyro- 
scope type [i, 2] do not give the required accuracy and empirical data play a large role. 

However, such detailed information on absorption spectra over a broad range of the param- 
eters determining the thermodynamic state of the radiating medium is not only difficult to ob- 
tain but also excessive. At low pressures and temperatures ~10S~ it is necessary to deter- 
mine the two-parameter function kv(pT) -- of the order of 107-10 " --describing the spectrum of 
the gas mixture typical for the combustion products in the range 1-15 ~m, It is practically 
impossible to obtain such a volume of data from experiment, and its use for direct calcula- 
tions involves a huge consumption of machine time. Therefore, in practice, the calculation 
of radiant transfer in a selective medium is based on models of the band approximately des- 
cribing the properties of the real spectrum averaged over a small spectral interval of 10-50 
cm -I. The models most often used are the isolated-llne model, the regular model, and the 
statistical (or Goody) model [2-6]. A certain loss of accuracy is involved, but this is com- 
pensated by the simplicity and ease of review of the results. In consequence of the great 
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